Acta Cryst. (1976). B32, 2542

Le Complexe Racémique Actif [(+)-Cren₃(+)-Rhen₃]Cl₆.6H₂O

PAR A. WHULER, C. BROUTY, P. SPINAT ET P. HERPIN

Laboratoire de Minéralogie–Cristallographie associé au CNRS, Université Pierre et Marie Curie, 4 place Jussieu, 75230 Paris Cédex 05, France

(Reçu le 8 mars 1976, accepté le 7 avril 1976)

Abstract. [(+)-Cren₃(+)-Rhen₃]Cl₆.6H₂O, trigonal, space group P321, a=11.587 (3), c=15.522 (6) Å, Z=2, $D_x=1.545$ g cm⁻³, V=1805 (1) Å³, μ (Mo K α)= 12.5 cm⁻¹. The refinement was carried out with the atomic coordinates of the isostructural active racemate [(+)-Coen₃(-)-Cren₃]Cl₆.6·1H₂O, in the knowledge that (+)-[Coen₃]³⁺ and (+)-[Cren₃]³⁺ have the same absolute configuration, as do (-)-[Cren₃]³⁺ and (+)-[Rhen₃]³⁺.

Introduction. La précipitation de cristaux de racémique actif [(+)-Coen₃(+)-Rhen₃]Cl₆.*n*H₂O a permis à Delepine & Charonnat (1930), de montrer que les cations complexes (+)-[Rhen₃]³⁺ et (+)-[Coen₃]³⁺ possèdent des configurations absolues inverses.

Les ions (+)-[Coen₃]³⁺ et (+)-[Cren₃]³⁺ possédant la même configuration absolue, le racémique actif [(+)-Cren₃(+)-Rhen₃]Cl₆.6H₂O a pu être précipité à partir d'un mélange équimoléculaire des composés actifs(+)-Cren₃Cl₃.2H₂O et(+)-Rhen₃Cl₃.2H₂O préparés selon les méthodes décrites par Galsbøl (1970). Andersen, Galsbøl & Harnung (1969) ont effectué un cliché de poudre de ce composé, soulignant son isomorphisme avec [(+)-Coen₃(-)-Cren₃]Cl₆.6,1H₂O (Whuler, Brouty, Spinat & Herpin, 1976).

La mesure de 2850 réflexions a été effectuée sur un diffractomètre Philips PW 1100 avec la radiation Mo $K\alpha$. Le fond continu a été évalué en fonction de θ .

Seules 1656 intensités $[F_{obs} \ge 2\sigma_{Fobs}]$, corrigées des facteurs de Lorentz et de polarisation, mais non de l'absorption, ont été retenues pour l'affinement de la structure. Les facteurs de diffusion ont été calculés à partir des coefficients de Cromer & Mann (1968), en tenant compte de la dispersion anomale pour Rh, Cr et Cl (Cromer & Liberman, 1970).

Les occupations des sites oxygène ont été affinées et conduisent à une hydratation de $6,0 \pm 0,1$ molécules d'eau. Les positions de tous les atomes d'hydrogène ont été déterminées sur série-différence et affinées. Les coordonnées et les facteurs d'agitation thermique des atomes, conduisant à R = 0,059,* sont regroupés dans le Tableau 1 (R = 0,061 pour la structure inverse).

Discussion. Les deux ions complexes indépendants sont de symétrie trigonale avec des ligands éthylènediamine de conformation *lel-lel-lel* (liaison C-C sensiblement parallèle à l'axe A_3).

Les cycles chélatés sont gauches:

- C(1) et C(2) sont respectivement 0,470 Å audessus et 0,246 Å audessous du plan Cr, N(1), N(2).

Tableau 1. Paramètres atomiques ($\times 10^4$), coefficients d'agitation thermique anisotrope ($\times 10^4$) ou isotrope (\mathring{A}^2 , pour les hydrogènes)

m facteur de multiplicité de l'atome.

	m	х	У	Z	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
Cr	0.33	6660 (0)	3330 (0)	1302 (1)	52 (0)	52 (1)	13 (0)	26 (0)	0 (0)	0 (0)
Rh	0.33	3330 (0)	6660 (0)	3686 (1)	66 (O)	66 (1)	18 (0)	33 (0)	0 (0)	0 (0)
N(1)	1	5220 (10)	1806 (10)	549 (4)	102 (11)	85 (11)	21 (3)	40 (10)	-7 (5)	- 14 (5)
N(2)	1	5027 (8)	2963 (8)	2049 (4)	67 (9)	102 (10)	25 (3)	53 (8)	4 (4)	8 (4)
N(3)	1	4724 (10)	8194 (10)	4423 (5)	80 (10)	79 (11)	34 (4)	33 (9)	3 (5)	- 10 (6)
N(4)	1	4967 (10)	7021 (8)	2951 (4)	90 (11)	72 (9)	22 (3)	38 (8)	2 (5)	-8 (4)
C(1)	1	3915 (13)	1677 (15)	772 (5)	112 (15)	155 (24)	23 (3)	62 (15)	-2 (6)	8 (7)
C(2)	1	3853 (10)	1733 (11)	1748 (5)	63 (9)	77 (11)	35 (4)	-8 (9)	-1 (5)	7 (6)
C(3)	1	6071 (10)	8385 (9)	4207 (6)	64 (9)	76 (10)	39 (4)	22 (7)	-13 (5)	- 14 (5)
C(4)	1	6135 (10)	8306 (12)	3234 (5)	89 (11)	126 (18)	24 (3)	57 (11)	4 (5)	-8 (6)
CÌ(1)	1	3940 (3)	4943 (3)	1259 (2)	139 (4)	121 (4)	27 (1)	87 (3)	8 (2)	5 (2)
Cl(2)	1	6134 (4)	5107 (3)	3748 (2)	130 (4)	124 (4)	31 (1)	82 (3)	10 (2)	4 (2)
O(1)	0.71	1040 (18)	2180 (16)	1216 (9)	128 (20)	209 (25)	123 (9)	86 (22)	6 (14)	19 (13)
O(2)	0.73	2069 (16)	816 (15)	3966 (12)	178 (22)	149 (19)	200 (14)	137 (16)	-82 (15)	-92 (14)
O(3)	0.33	0 (0)	0 (0)	2546 (10)	191 (0)	191 (14)	53 (6)	96 (0)	0 (0)	0 (0)
O (4)	0.11	0 (0)	0 (0)	0 (0)	269 (0)	269 (71)	43 (20)	134 (0)	0 (0)	0 (0)
0(5)	0.12	0 (0)	0 (0)	5000 (0)	345 (0)	345 (89)	109 (64)	173 (0)	0 (0)	0 (0)

^{*} La liste des facteurs de structure a été déposée au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 31794: 9 pp.). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, Angleterre.

Ion (+)-[Cren₃]³⁺

Tableau 1 (*suite*)

Tableau 2. Distances (Å) et angles (°) intramoléculaires

	m	x	У	Z	B
H(N1)1	1	517 (15)	115 (14)	63 (7)	1,7 (1,3)
H(N1)2	1	563 (15)	213 (14)	5 (8)	1,7 (1,4)
H(N2)1	1	482 (13)	359 (12)	197 (8)	3,4 (1,6)
H(N2)2	1	524 (12)	296 (12)	256 (6)	1,7 (1,5)
H(N3)1	1	457 (14)	878 (13)	438 (6)	2,4(1,5)
H(N3)2	1	460 (13)	798 (13)	497 (7)	2,5(1,4)
H(N4)1	1	508 (14)	633 (13)	298 (7)	1,6 (1,3)
H(N4)2	1	468 (14)	709 (15)	243 (7)	2,3(1,4)
H(CI)1	1	326 (16)	88 (15)	40 (8)	5,4 (2.0)
H(Cl)2	1	410 (15)	253 (15)	42 (8)	2,4 (2,0)
H(C2)1	1	387 (17)	93 (17)	204 (9)	4,8 (2,2)
H(C2)2	1	300 (16)	171 (15)	197 (8)	2,4 (1,7)
H(C3)1	1	681 (17)	915 (16)	448 (9)	4,2 (2,1)
H(C3)2	1	618 (15)	769 (15)	447 (7)	4,5 (2,3)
H(C4)1	1	698 (14)	835 (17)	298 (7)	4,7 (2,1)
H(C4)2	1	603 (17)	903 (16)	297 (8)	2,5 (1,8)
H(O1)1	0,71	153 (18)	202 (18)	86 (9)	2,7 (2,0)
H(O1)2	0,71	122 (18)	300 (18)	125 (9)	2,5 (2,0)
H(O2)1	0,73	180 (19)	96 (19)	355 (9)	2,7 (2,1)
H(O2)2	0,73	275 (18)	114 (20)	409 (9)	2,5 (2,2)
H(O3)	0,66	55 (20)	9 (19)	227 (9)	3,5 (2,0)
H(O4)	0,22	- 69 (20)	0 (0)	0 (0)	2,4 (2,2)
H(O5)	0,24	-60 (21)	0 (0)	500 (0)	4,2 (2,3)

- C(3) et C(4) s'écartent respectivement 0,288 Å audessus et 0,435 Å au-dessous du plan Rh, N(3), N(4).

Les deux octaèdres sont de dimensions très voisines (Tableau 2), mais, comme dans le cas des racémiques, la distorsion est plus accentuée pour (+)-[Cren₃]³⁺ (rotation entre les deux triangles de base= $6,4^{\circ}$) que pour (+)-[Rhen₃]³⁺ (4,7°). Les deux liaisons métalazote de chaque ligand ont des longueurs très voisines, contrairement au racémique actif précedemment étudié.

Les chlores assurent la cohésion entre les ions complexes par l'intermédiaire de liaisons hydrogène N-H···Cl (Tableau 3, Fig. 1): chaque chlore est

Fig. 1. Projection, perpendiculairement à [110], des molécules complexes et des molécules d'eau. Les différentes liaisons hydrogène sont matérialisées.

Cr - N(1) Cr - N(2) N(1) - C(1) N(2) - C(2)	2,081 (7) Å 2,076 (7) 1,487 (10)	$\begin{array}{c} N(1) &Cr &N(2) \\ Cr &N(1) & -C(1) \\ Cr &N(2) & -C(2) \\ N(1) & -C(1) & C(2) \end{array}$	82,9 (3)° 107,5 (6) 109,2 (5)
C(1)-C(2) C(1)-C(2) N(1)-H(N1)1 N(1)-H(N1)2	1,519 (9) 0,75 (8) 0.88 (7)	N(1) = C(1) - C(2) N(2) = C(2) - C(1) Cr = N(1) - H(N1)1 Cr = N(1) - H(N1)2	107,1 (8) 108,5 (7) 113 (6) 95 (6)
14(1)-11(141)2	0,00 (7)	$\begin{array}{c} C(1) &N(1) - H(N1)2 \\ C(1) &N(1) - H(N1)1 \\ C(1) &N(1) - H(N1)2 \\ H(N1)1 - N(1) - H(N1)2 \end{array}$	108 (7) 123 (7) 109 (9)
N(2)-H(N2)1 N(2)-H(N2)2	0,88 (9) 0,82 (7)	Cr——N(2)-H(N2)1 Cr—N(2)-H(N2)2 C(2)—N(2)-H(N2)1 C(2)—N(2)-H(N2)2	111 (9) 107 (7) 105 (9) 116 (7)
C(1)-H(C1)1 C(1)-H(C1)2	1,03 (10) 1,05 (9)	$\begin{array}{c} H(N2)1-N(2)-H(N2)2\\ N(1)C(1)-H(C1)1\\ N(1)C(1)-H(C1)2\\ C(2)C(1)-H(C1)2\\ C(2)C(1)C(1)-H(C1)2\\ C(2)C(1)C(1)-H(C1)2\\ C(2)C(1)C(1)-H(C1)2$	109 (11) 102 (8) 94 (6) 124 (8)
C(2)–H(C2)1 C(2)–H(C2)2	1,04 (10) 1,04 (9)	$\begin{array}{l} C(2) &C(1) - \Pi(C1)2 \\ H(C1)1 - C(1) - H(C1)2 \\ N(2)C(2) - H(C2)1 \\ N(2)C(2) - H(C2)2 \\ C(1)C(2) - H(C2)2 \\ C(1)C(2) - H(C2)2 \\ H(C2)1 - C(2) - H(C2)2 \\ \end{array}$	118 (0) 105 (8) 108 (9) 109 (6) 112 (8) 114 (5) 106 (11)
Ion (+)-[Rhe	n ₃] ³⁺		100 (11)
Rh—N(3) Rh—N(4)	2,054 (8) Å 2,072 (7)	N(3)—Rh—N(4) Rh—N(3)-C(3)	83,4 (3)° 108,3 (6)
N(3)-C(3) N(4)-C(4) C(3)-C(4)	1,503 (10) 1,494 (10) 1,518 (9)	$\begin{array}{l} Rh N(4) - C(4) \\ N(3) C(3) - C(4) \\ N(4) C(4) - C(3) \end{array}$	108,8 (5) 107,0 (8) 107,8 (8)
N(3)-H(N3)1 N(3)-H(N3)2	0,79 (10) 0,88 (8)	Rh——N(3)-H(N3)1 Rh——N(3)-H(N3)2 C(3)—N(3)-H(N3)1 C(3)—N(3)-H(N3)2	106 (8) 110 (7) 120 (9) 105 (8)
N(4)-H(N4)1 N(4)-H(N4)2	0,87 (8) 0,89 (7)	$\begin{array}{c} H(N3)1-N(3)-H(N3)2\\ RhN(4)-H(N4)1\\ RhN(4)-H(N4)2\\ C(4)N(4)-H(N4)2\\ C(4)N(4)-H(N4)2\\ H(N4)2\\ \end{array}$	105 (9) 109 (6) 100 (7) 114 (7) 112 (8)
C(3)-H(C3)1 C(3)-H(C3)2	0,98 (10) 0,97 (11)	$\begin{array}{c} C(4) &N(4) - H(N4)2 \\ H(N4)1 - N(4) - H(N4)2 \\ N(3) &C(3) - H(C3)1 \\ N(3) &C(3) - H(C3)2 \\ C(4) &C(3) - H(C3)1 \\ C(4) &C(3) \\ C(4) &C(3)$	112 (8) 112 (10) 114 (8) 110 (7) 116 (8)
C(4)–H(C4)1 C(4)–H(C4)2	1,04 (9) 1,00 (9)	$\begin{array}{l} C(4) C(3) - H(C3)_2 \\ H(C3)_1 - C(3) - H(C3)_2 \\ N(4) C(4) - H(C4)_1 \\ N(4) - C(4) - H(C4)_2 \\ C(3) - C(4) - H(C4)_2 \\ C(3) - C(4) - H(C4)_2 \\ H(C4)_1 - C(4) - H(C4)_2 \end{array}$	110 (7) 99 (8) 107 (9) 107 (6) 116 (8) 109 (6) 108 (12)
Molécules d'e	au		、 /
O(1)-H(O1)1	0,88 (12) Å	H(O1)1-O(1)-H(O1)2	116 (14)°

O(1)-H(O1)1	0,88 (12) Å	H(O1)1-O(1)-H(O1)2	116 (14)°
O(1)-H(O1)2	0,87 (14)		
O(2) - H(O2)1	0,78 (12)	H(O2)1-O(2)-H(O2)2	124 (16)
O(2) - H(O2)2	0,71 (12)		00 (12)
O(3) - H(O3)	0,73(13)	$H(03) = O(3) = H(03)^{(4)}$	90 (12) 120
O(4) - H(O4)	0,80(17)	$H(04) = O(4) = H(04)^{(1)}$	120
$O(3) \Pi(03)$	0,70 (15)	$\Pi(03) = O(3) \Pi(03)$	120

Les indices correspondent aux atomes homologues suivants:

(1)	-y	x - y	Z	(4)	-x	y - x	1 - z
(2)	y-x	-x	Ζ	(5)	x - y	-y	1 z
(3)	у	х	1 - z				

Tableau 3. Liaisons hydrogène: distances (Å) et angles (°)

$A-H\cdots B$ $N(1)^{(2)}-H(N1)1^{(2)}\cdots Cl(1)$ $N(1)^{(4)}-H(N1)2^{(4)}\cdots Cl(1)$ $N(2)-H(N2)1\cdots Cl(1)$ $N(4)-H(N4)2^{(2)}\cdots Cl(1)$ $N(4)^{(2)}-H(N4)2^{(2)}\cdots Cl(1)$ $N(3)^{(2)}-H(N3)1^{(2)}\cdots Cl(2)$ $N(3)^{(4)}-H(N3)2^{(4)}\cdots Cl(2)$ $N(4)$	$A \cdots B$ 3,356 (8) 3,256 (7) 3,358 (7) 3,354 (6) 3,453 (7) 3,363 (9) 3,280 (8) 2,263 (8)	$H \cdots B$ 2,62 (7) 2,60 (8) 2,52 (9) 2,85 (9) 2,73 (9) 2,63 (9) 2,64 (9) 2,58 (9)	$\angle A-H\cdots B$ 167 (8) 131 (8) 160 (9) 118 (9) 139 (9) 156 (9) 130 (7) 150 (7)
$\begin{array}{l} N(2) & \longrightarrow H(N2)2 \cdots Cl(2) \\ N(2)^{(2)} - H(N2)2^{(2)} \cdots Cl(2) \\ O(1) & \longrightarrow H(O1)2 \cdots Cl(1) \\ O(2)^{(2)} - H(O2)2^{(2)} \cdots Cl(2) \\ O(1) & \longrightarrow H(O1)1 \cdots O(4) \\ O(2) & \longrightarrow H(O2)1 \cdots O(3) \\ O(3) & \longrightarrow H(O3) \cdots O(1)^{(2)} \\ O(4) & \longrightarrow H(O4) \cdots O(1)^{(1)} \\ O(5) & \longrightarrow H(O5) \cdots O(2)^{(1)} \end{array}$	3,404 (7)	2,84 (8)	127 (8)
	3,416 (7)	2,78 (8)	137 (8)
	3,29 (2)	2,82 (12)	116 (15)
	3,18 (1)	2,62 (12)	139 (12)
	2,89 (2)	2,50 (15)	108 (15)
	3,04 (2)	2,38 (11)	143 (14)
	3,01 (2)	2,40 (17)	142 (10)
	2,89 (2)	2,46 (6)	116 (6)
	2,64 (2)	2,26 (17)	116 (8)

ainsi lié à trois ions complexes différents. Les molécules d'eau, situées dans des canaux parallèles à l'axe A_3 , sont reliées entre elles par des liaisons O-H···O. La cohésion entre molécules complexes et molécules d'eau est assurée, en plus des intéractions de van der Waals, par des liaisons hydrogène $O-H\cdots Cl$ (Tableau 3, Fig. 1) comme dans le complexe racémique actif $[(+)-Coen_3(-)-Cren_3]Cl_6.6,1H_2O.$

Nous remercions M B. Bachet pour sa contribution efficace apportée au cours des mesures diffractométriques.

Références

ANDERSEN, P., GALSBØL, F. & HARNUNG, S. E. (1969). Acta Chem. Scand. 23, 3027–3037.

- CROMER, D. T. & LIBERMAN, D. (1970). J. Chem. Phys. 53, 1891–1895.
- CROMER, D. T. & MANN, J. B. (1968). Acta Cryst. A24, 321-323.
- DELEPINE, M. & CHARONNAT, R. (1930). Bull. Soc. Fr. Minér. Crist. 53, 73-84.

GALSBØL, F. (1970). Inorg. Synth. 12, 269-280.

- WHULER, A., BROUTY, C., SPINAT, P. & HERPIN, P. (1976).
- Acta Cryst. B32, 194–198. C. R. Acad. Sci. Paris. A paraître.

Notes and News

Announcements and other items of crystallographic interest will be published under this heading at the discretion of the Editoria^{*} Board. The notes (in duplicate) should be sent to the Executive Secretary of the International Union of Crystallography (J. N. King, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England).

Announcements of Forthcoming Meetings and Short Courses

Readers of Acta Crystallographica are reminded that information about forthcoming meetings of interest to crystallographers, including meetings of scientific societies, congresses, summer schools, *etc.*, is published regularly in Journal of Applied Crystallography. In each issue, in addition to details of any new meetings, a calendar of events is published, giving abbreviated notices of all meetings announced in the current or earlier issues of the journal. Details of meetings for inclusion, subject to the approval of the Editorial Board, should be sent to Dr J. N. King, Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England. Announcements of meetings are not normally published in *Acta Crystallographica*.